"In einem fernen Land gibt es als Zahlungsmittel nur Münzen zu 3 und 8 Einheiten. Zeigen Sie, dass man
a) jeden "ganzzahligen" Geldbetrag größer als 13 allein mit diesen Münzen bezahlen kann, ohne dass herausgegeben werden muss.
b) mit Herrausgeben jeden "ganzzahligen" Geldbetrag mit diesen Münzen bezahlen kann."
Wer kriegt mir dass bewiesen? Wir sind ne Weile drangesessen. Das Beweisverfahren muss (oder soll zumindest) vollständige Induktion sein.
Unser Ansatz für a) ist: 13 > 8K+3L , wobei L und K ganzzahlige Faktoren sind. Mit diesem Ansatz kann man allerdings beweeistechnisch relativ wenig anfangen! Weiterhin haben wir rausgefunden, dass es möglich ist jeden Geldbetrag größer 13 mit 0,1 oder 2 8er Münzen zu bezahlen!
Viel Spaß beim Rätseln!
Green
Off Topic 20.148 Themen, 223.547 Beiträge
also das vonFrank war fast ein Beweis, denn er müsste nur die konkreten Kombinationen bis 27 aufstellen, und 28 ist dann ja 14+14 (schon gezeigt) sodass aus diesen Kombinationen jede ganze Zahl > 13 gebildet werden kann. Ist dann natürlich auch eine vollständige induktion, aber nicht so schön mathematisch formuliert. Aber bei so einer konstruierten Fragestellung geht es auch so anschlaulich, und das ist nie verkehrt.
Bob